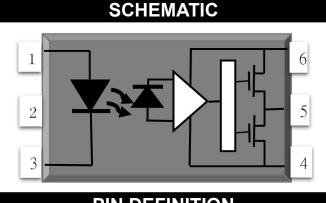


Description

The TDL341 series Photocoupler is ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications and inverters in power supply system. It contains an AlGaAs LED optically coupled to an integrated circuit with a power output stage.

The 2.5A peak output current is capable of directly driving most IGBTs with ratings up to 1200 V/200 A. For IGBTs with higher ratings, the TDS341 series can be used to drive a discrete power stage which drives the IGBT gate.

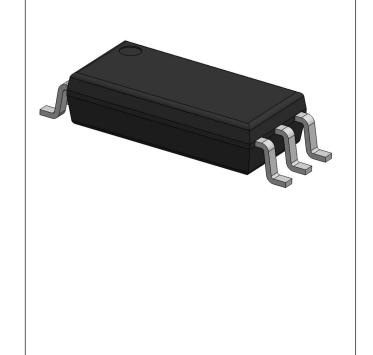
The Photocoupler operational parameters are guaranteed over the temperature range from


Features

-40°C ~ +110°C.

- 2.5 A minimum peak output current
- Rail-to-rail output voltage
- 110 ns maximum propagation delay
- Under Voltage Lock-Out protection (UVLO) with hysteresis
- Wide operating range: 15 to 30 Volts (V_{CC})
- Guaranteed performance over temperature
 -40°C ~ +110°C.

Applications


- IGBT/MOSFET gate drive
- Uninterruptible power supply (UPS)
- Industrial Inverter
- AC/Brushless DC motor drives
- Switching power suppliers

PIN DEFINITION

1.Anode 6.Vcc 2.None 5.VO 3.Cathode 4.Vss

PACKAGE

TRUTH TABLE								
LED	VCC-VSS (Turn-ON, +ve going)	VCC-VSS (Turn-OFF, -ve going)	VO					
OFF	0 - 30 V	0 - 30 V	Low					
ON	0 - 11.0 V	0 - 9.5 V	Low					
ON	11.0 - 13.5 V	9.5 - 12 V	Transition					
ON	13.5 - 30 V	12 - 30 V	High					

Note: A 0.1µF bypass capacitor must be connected between Pin 4 and 6.

ABSOLUTE MAXIMUM RATINGS									
PARAMETER	SYMBOL	Min	Max	UNIT	Note				
Storage Temperature	Tstg	-55	125	°C	-				
Operating Temperature	Topr	-40	100	°C	-				
Output IC Junction Temperature	TJ	-	125	°C	-				
Total Output Supply Voltage	(VCC –VSS)	0	35	V	-				
Average Forward Input Current	IF	-	20	mA	-				
Reverse Input Voltage	VR	-	5	V	-				
"High" Peak Output Current	IOH(PEAK)	2.5	-	Α	1				
"Low" Peak Output Current	IOL(PEAK)	2.5	-	Α	1				
Output Voltage	VO(PEAK)	-0.5	Vcc	V	-				
Power Dissipation	PI	-	45	mW	-				
Output IC Power Dissipation	РО	-	700	mW	-				
Lead Solder Temperature	Tsol	-	260	°C	-				

Note: Ambient temperature = 25°C, unless otherwise specified. Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.

Note 1: Exponential waveform. Pulse width ≤ 10 µs, f ≤ 15 kHz

RECOMMENDED OPERATION CONDITIONS									
PARAMETER	SYMBOL MIN. MAX.			UNIT					
Operating Temperature	T _A	-40	110	°C					
Supply Voltage	V _{CC}	10	30	V					
Input Current (ON)	I _{F(ON)}	7	16	mA					
Input Voltage (OFF)	V _{F(OFF)}	-3.0	0.8	V					

ELECTRICAL OPTICAL CHARACTERISTICS										
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION	NOTE			
INPUT CHARACTERISTICS										
Forward Voltage	V _F	-	1.38	1.8	V	I _F = 10 mA	-			
Reverse Current	I _R	-	-	10	μΑ	V _R =5V	-			
Input Threshold Current	le		0.0	2	A	51/1 04				
(Low to High)	İFLH	-	0.9	2	mA	$V_{\rm O} > 5V, I_{\rm O} = 0A$	-			
Input Threshold Voltage	VFHL	0.8			V	Vcc = 30 V, Vo < 5V				
(High to Low)	VFHL	0.8	-	-	V	VCC = 30 V, VO < 5V	_			
Input Capacitance	Cin	-	60	-	pF	V _F = 0, f = 1MHz	-			
		OUT	PUT CHA	RACTER	ISTICS					
High Loyal Supply Current	1	-	1.50	3	mA	$I_F = 10 \text{ mA}, V_{CC} = 30 \text{ V},$				
High Level Supply Current	Іссн					V_0 = Open, Rg = 30 Ω , Cg = 3 nF				
Low Lovel Supply Current	I _{CCL}	-	1.50	3	mA	$I_F = 0 \text{ mA}, V_{CC} = 30 \text{ V},$				
Low Level Supply Current						V_0 = Open, Rg = 30 Ω , Cg = 3 nF				
High Level Output Voltage	V _{OH}	29.7	29.88	-	V	I _F = 10 mA, I _O = -100 mA	2,3			
Low Level Output Voltage	V _{OL}	-	0.1	0.3	V	I _F = 0 mA, I _O = 100 mA				
High Land Order to Consent		-	-	-2.5	А	I _F = 10 mA, V _{CC} = 30V				
High Level Output Current	Іон					V _O = V _{CC} - 4	1			
Love Lovel Output Coment	Current IoL	2.5	-	-	А	I _F = 0 mA, V _{CC} = 30V				
Low Level Output Current						V _O = V _{SS} + 4	1			
Under Voltage Lockout	VUVLO+	11.0	12.6	13.5	V	V _O > 5V, I _F = 10 mA				
Threshold	VUVLO-	9.5	11.2	12.0	V	V _O < 5V, I _F = 10 mA				

All Typical values at T_A = 25°C and $V_{CC} - V_{SS}$ = 30 V, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.

Note 1: Maximum pulse width = $10 \mu s$.

Note 2: In this test VOH is measured with a dc load current. When driving capacitive loads, VOH will approach VCC as IOH approaches zero amps.

Note 3: Maximum pulse width = 1 ms.

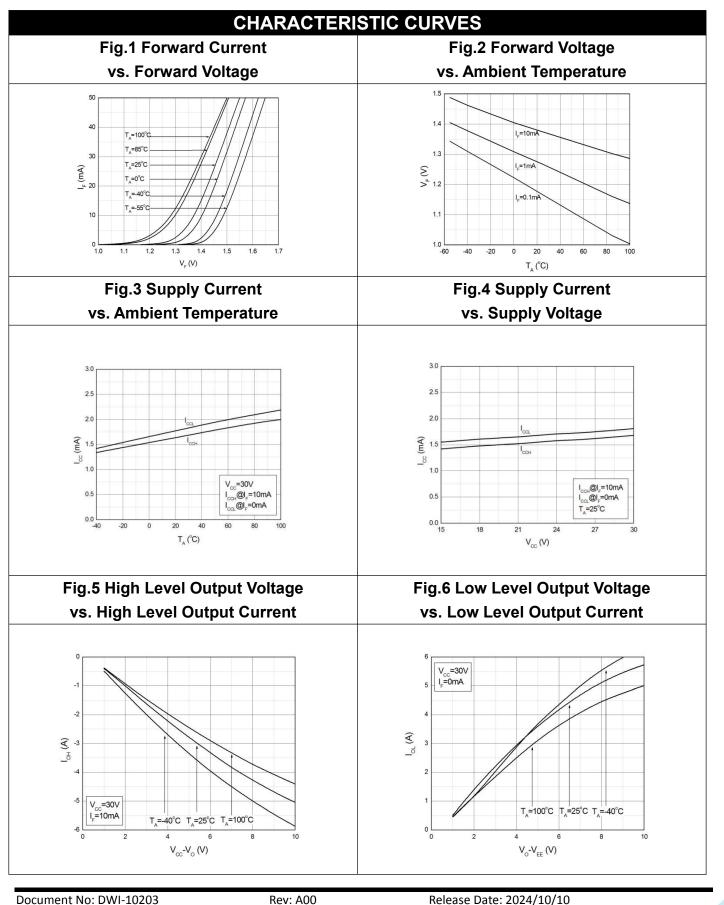
SWITCHING SPECIFICATION										
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION	NOTE			
SWITCHING CHARACTERISTICS										
Propagation Delay Time	t_{PHL}	_	150	500	ns					
to Output Low Level	LPHL	_	130	300	113		-			
Propagation Delay Time	t _{PLH}		170	500	ns	$Rg = 10\Omega$,				
to Output High Level	LPLH	_	170	300	113	Cg = 10 nF,	-			
Pulse Width Distortion	PWD	-	22	200	ns	f = 10kHz,	_			
T dies Width Bistoria	1 775					Duty Cycle = 50%				
Propagation Delay Difference	PDD	-200	00 -	+200	ns	IF = 10mA,	_			
Between Any Two Parts	(t _{PHL} - t _{PLH})					Vcc = 30V				
Rise Time	t _r	-	50	-	ns		-			
Fall Time	t _f	-	50	-	ns		-			
Common Mode Transient	Mode Transient					$I_F=7$ to 16mA $V_{CC}=30V$,				
Immunity at Logic High	СМн	±20	-	-	kV/µs	T _A = 25 °C,	1,2			
minumity at Logic riight						V _{CM} = 1kV				
Common Mode Transient						I _F =0mA V _{CC} = 30V,				
Immunity at Logic Low	CML	±20	-	_	kV/µs	T _A = 25 °C,	1,3			
minumity at Logic Low						V _{CM} = 1kV				

All Typical values at $T_A = 25$ °C and $V_{CC} - V_{SS} = 30$ V, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.

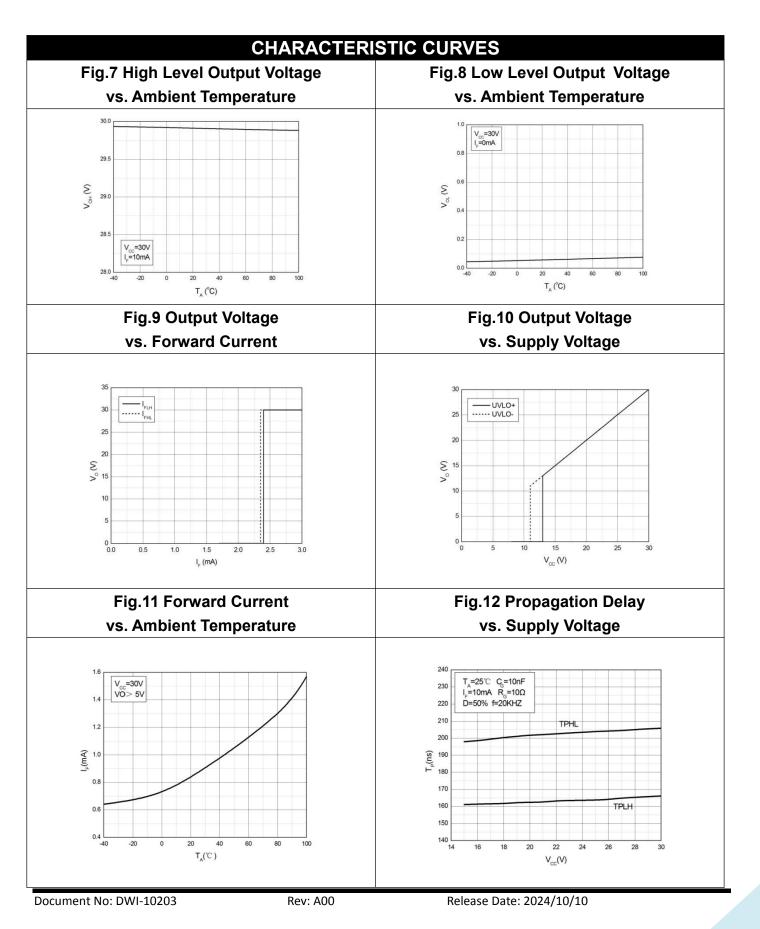
Note 1:Pin 2 needs to be connected to LED common.

Note 2: Common mode transient immunity in the high state is the maximum tolerable dVCM/dt of the common mode pulse, VCM, to assure that the output will remain in the high state (meaning VO > 10.0V).

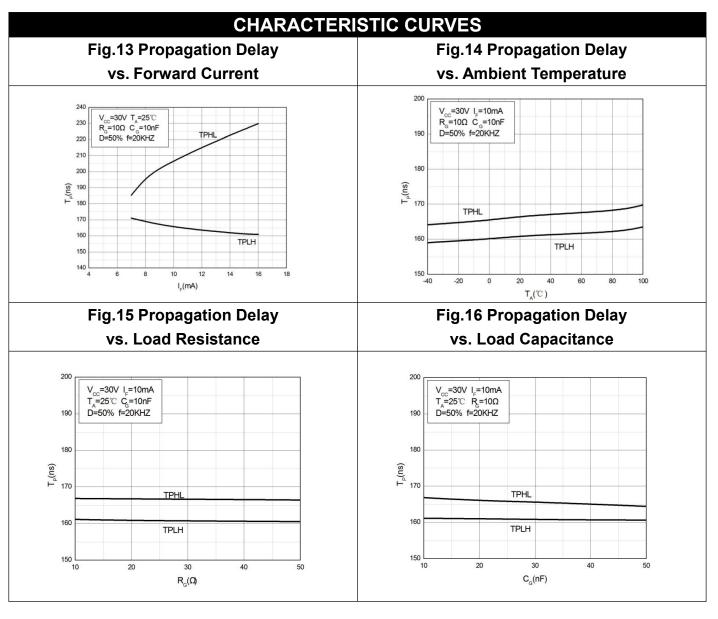
Note 3: Common mode transient immunity in a low state is the maximum tolerable dVCM/dt of the common mode pulse, VCM, to assure that the output will remain in a low state (meaning VO < 1.0V).

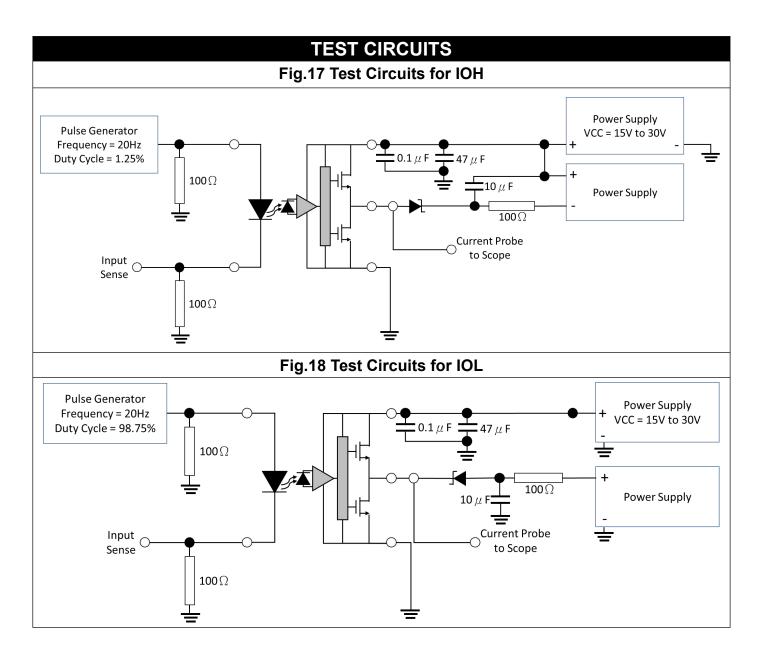

ISOLATION CHARACTERISTIC											
Parameter	Symbo	Device	Min.	Тур.	Max.	Unit	Test Condition	Note			
Withstand Insulation	VISO	-	5000	-	-	V	RH ≤ 40%-60%,	1,2			
Test Voltage	VISO						t = 1min, T _A = 25 °C				
Input-Output	Б			10 ¹²		0	V = 500V DC	4			
Resistance	R_{I-O}	-	-	10.2	-	Ω	V _{I-O} = 500V DC	1			

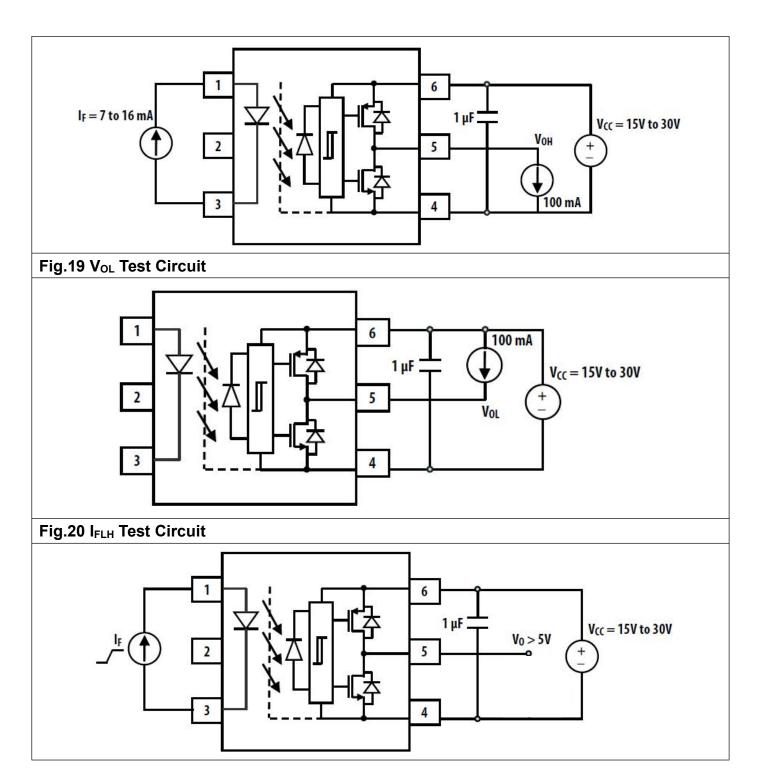
All Typical values at $T_A = 25^{\circ}$ C and $V_{CC} - V_{SS} = 30$ V, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition.

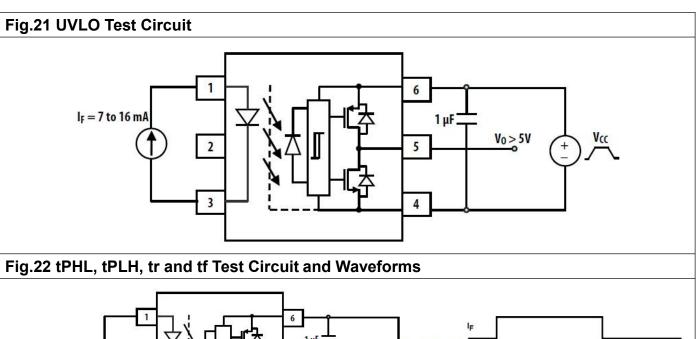

Note 1: Device is considered a two terminal device: pins 1, 2, 3 are shorted together and pins 4, 5, 6 are shorted together.

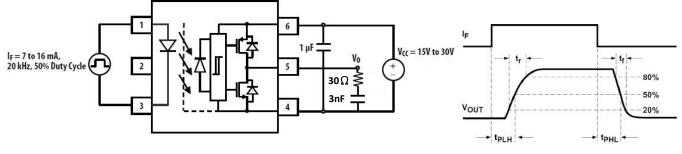
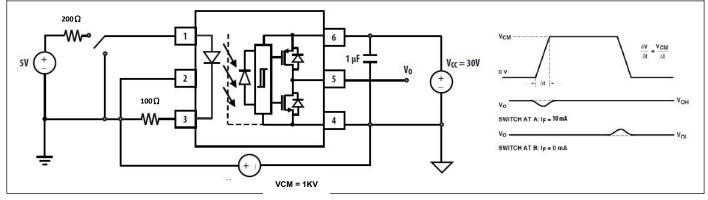
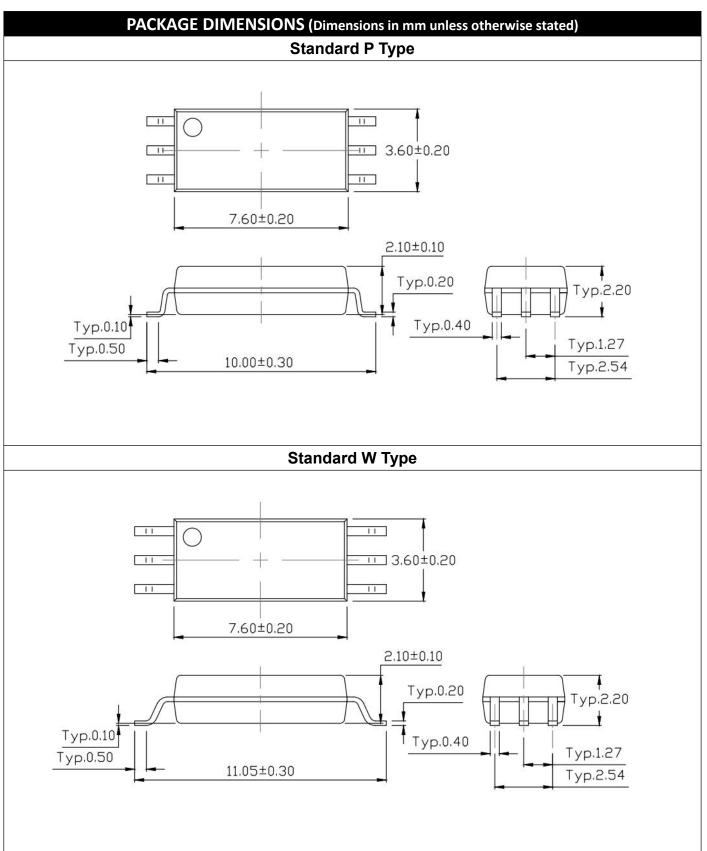
Note 2: According to UL1577, each photocoupler is tested by applying an insulation test voltage 6000VRMS for one second (leakage current less than 10uA). This test is performed before the 100% production test for partial discharge.

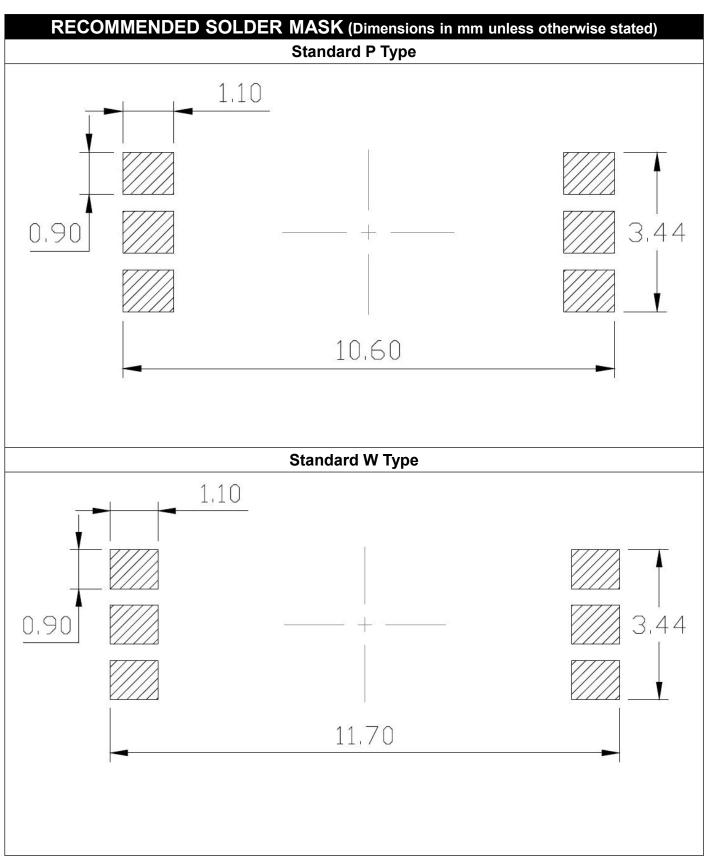


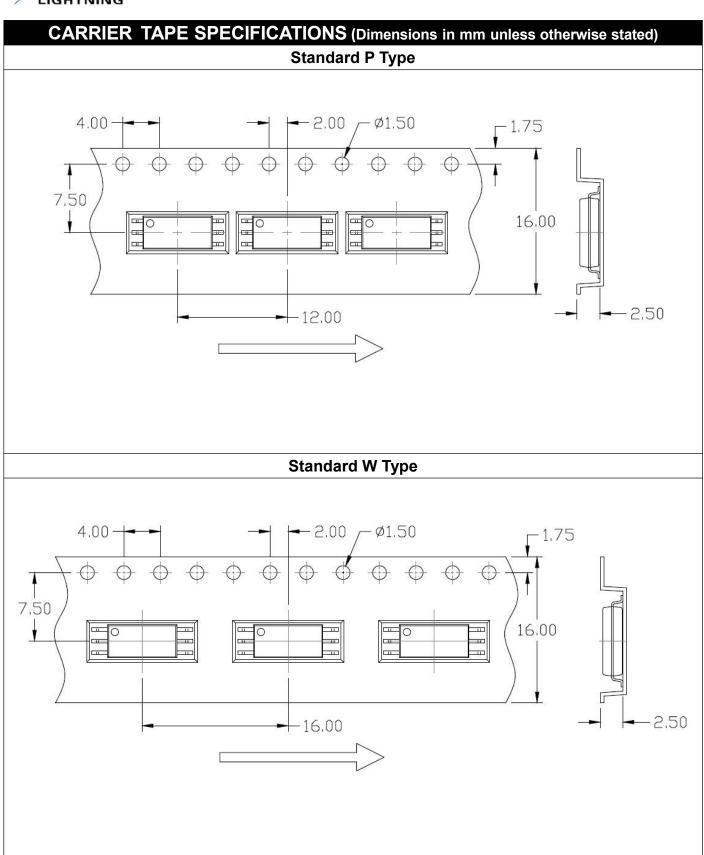


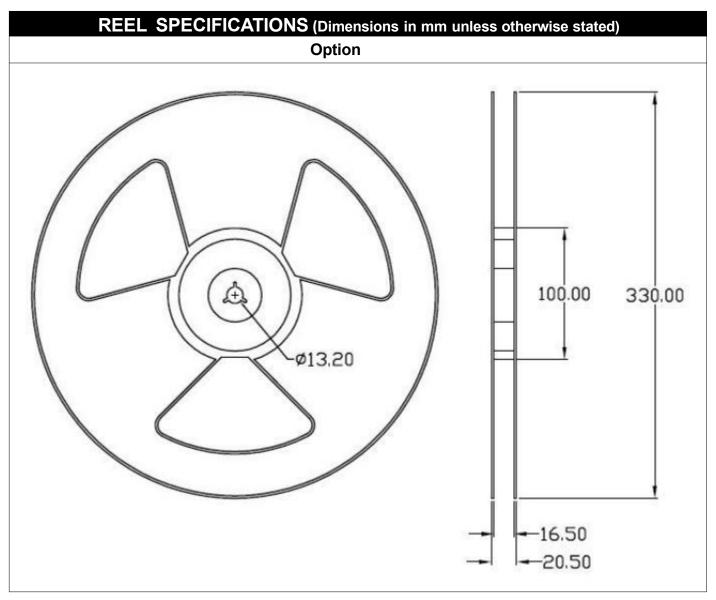


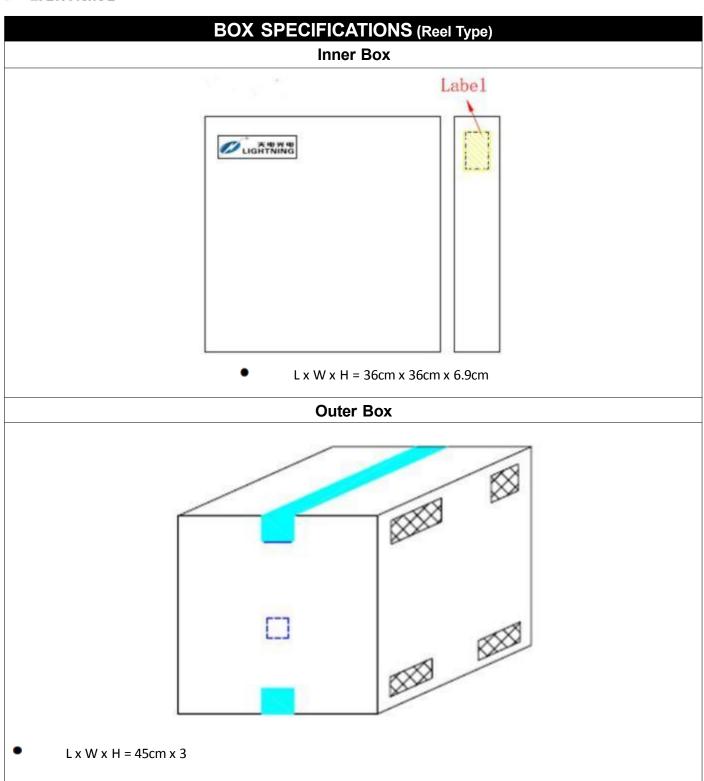



Fig.23 CMR Test Circuit with Split Resistors Network and Waveforms







DISCLAIMER

- LIGHTNING is continually improving the quality, reliability, function and design. LIGHTNING reserves the right to make changes without further notices.
- The characteristic curves shown in this datasheet are representing typical performance which are not guaranteed.
- LIGHTNING makes no warranty, representation or guarantee regarding the suitability of the products
 for any particular purpose or the continuing production of any product. To the maximum extent
 permitted by applicable law, LIGHTNING disclaims (a) any and all liability arising out of the
 application or use of any product, (b) any and all liability, including without limitation special,
 consequential or incidental damages, and (c) any and all iMPCied warranties, including warranties of
 fitness for particular
- The products shown in this publication are designed for the general use in electronic applications such as office automation, equipment, communications devices, audio/visual equipment, electrical application and instrumentation purpose, non-infringement and merchantability.
- This product is not intended to be used for military, aircraft, medical, life sustaining or lifesaving applications or any other application which can result in human injury or death.
- Please contact LIGHTNING sales agent for special application request.
- Immerge unit's body in solder paste is not recommended.
- Parameters provided in datasheets may vary in different applications and performance may vary
 over time. All operating parameters, including typical parameters, must be validated in each
 customer application by the customer's technical experts. Product specifications do not expand or
 otherwise modify LIGHTNING's terms and conditions of purchase, including but not limited to the
 warranty expressed therein.
- Discoloration might be occurred on the package surface after soldering, reflow or long-time use. It neither impacts the performance nor reliability.